SAND2021-15306 TR

Mass Properties Tutorial

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia LLC, a wholly owned subsidiary of Honeywell International Inc. for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

Problem Description

In this tutorial we will demonstrate the feature for constraining Plato designs to have user-specified mass properties. We will design a bracket for stiffness, constrain the center of gravity to be a user-specified value and see how it affects the maximum displacement of the design.

Create a New Model

- Choose New Model then Next
- Choose Create From Template then Next
- Enter Mass as the Model Name
- Choose the Plato Templates->Basic->Maximize Stiffness (PlatoAnalyze) template and then Finish

20				_		×	
Template Mo	del						
Model Name:	Mass					-	
Location: C:\Users\bwclark\Docun			nents\PlatoRuns			Browse	
type filter te	ext						
V 🗁 Plato Templates						^	
✓ Basic							
Blank Input File							
Match Modes (SierraSD)							
Maximize Heat Conduction (PlatoAnalyze)							
			,_,			*	
Preview tem	iplate co	ontent:					
begin service 1						^	
number_processors 1							
end service							
						~	
(?)		< Back	Next >	Finish	Ca	ncel	

Import the Design Domain Mesh

- Right-click on "Geometry/Mesh" in the tree and choose "Import...".
- Choose "GENESIS" as the file type and choose "Next".
- Browse for the file called "MassPropertiesTutorialMesh.exo", choose the "Free Mesh" option, and then choose "Finish".

Save the Geometry/Mesh

 Click on the "Geometry/Mesh" node in the tree and then click the Save icon in the toolbar.

Load the Pre-defined Input Deck

 Right-click on the "plato" node in the tree and choose "Open Input File". This will open a text editor showing the current input file for this model. We will be replacing all of the text in the default input deck with that in the file called

"MassPropertiesTutorialInputDeck.i".

- Open "MassPropertiesTutorialInputDeck.i" in a text editor of your choice and copy and paste its contents into the input deck editor in Plato replacing the text that was there.
- Then click on the "**Save**" icon in the toolbar to save the model.

Run the Optimization

- Click on the plato node in the tree to bring up the job submission panel in the Settings view
- Choose Plato as the code and then choose the machine and execution template you want to use

🗄 Model Navigat	Power Tools					
🖻 🔄 😻 🥭 📰 📭						
🗸 🔊 Mass						
> 🛒 Geometry/	Mesh					
> 🚀 plato						
Parameter Studies						
▼ Resources						
Input files:	files: 🖂 Mass gen					
	Mass.launch					
✓ Prune and Refine						
 Prune and Ren 	ine	Prune Mesh				
Prune Me	sh					
Prune and Ref Prune Me Number Buffe	sh er Layers: 2					

- In the **Resources** area make sure **Mass.gen** is checked so that this file gets pushed to the working directory.
- In the Prune and Refine area make sure Prune Mesh is unchecked and Number Refines is 0. For this first run we won't be doing any pruning or refining.
- Choose any other preferences and launch the job by clicking on Submit Simulation Job toward the top of the panel

Initial Result

After 50 iterations you should have a result that looks like the one below. This initial run did not have the center of gravity (CG) constrained to be a specific value. To measure the CG we will first create an STL version of the result and then list its mass properties.

- Expand the "Geometry/Mesh" node in the tree to show all of the results from this initial run.
- Right click on the last one and choose "Generate STL".
- In the CUBIT console type "list volume 1 geometry". Toward the end of the output you will see some mass properties. Note: to get to the CUBIT console click on the icon in the Console toolbar (below) until it cycles back to the CUBIT console. This initial result has a center of gravity of about 1.27, 0.0, 0.0.

Max Displacement in Y

 View the max y displacement by right clicking on the last result in the "Geometry/Mesh" folder and choosing "Fringe Plot->dispy_plato_analyze_2". For this design the max displacement in y is -0.00823.

Re-run with a CG Constraint

Now we will pretend there is a requirement to have the CG located at 1.8, 0.5, 0.0 and will rerun Plato with this constraint. We will actually enforce the desired CG by adding an additional sub-objective to the problem. You can also add it as an actual constraint but this problem converges more quickly with it enforced as part of the objective.

Create CG Criterion

- plato optimization-based design
- Click on the "Criteria" node in the tree and then in the Settings panel choose "Criterion" to create a new criterion.
- Set the "id" to "3", "type" to "mass_properties", and add criterion parameters as shown below to set the CG x and y to "1.8" and "0.5" respectively.
- Note: To add a parameter right-click anywhere in the "Line commands" pane and choose "Add...".

👘 Command Panel 🗖 Settings				
+ Summary				
Name: 3				
 type mass_properties cgx 1.8 weight 1 cgv 0.5 weight 1 				

Add a New Service

- Click on the "Services" node in the tree and then in the Settings panel choose "Service" to create a new service.
- Set the "id" to "3" and add service parameters as shown below.

🖫 Model Navigator 🛛 🗖 Power Tools 🛛 🖓 🗖	🎯 Command Panel 🗖 Set	Command Panel
	Services	
✓ <u>a</u> Mass	@" Services	💣 service
> 🚞 Geometry/Mesh	Command Options	
✓ in plato [Finished]	Select the links below to c	A service '3' not referenced
> 🍪 Blocks		
> O Boundary Conditions	Service	+ Summary
> 🧬 Constraints		
> 🧬 Criteria		
> 🗊 Finite Element Model		
> => Loads		Name: 3
> 🍪 Materials		
> 🧬 Objective		
> 🖄 Optimization Parameters		Line assessed
> 🖄 Outputs		
Paths		🔍 codo plato, apalvaro
> 🧬 Scenarios		Code plato_analyze
V 🥔 Services		number_processors 1
service "1"		
service "2"		
<u> </u>		

Update the Objective

- Right-click on the "**plato**" node in the tree and choose "**Open Input File**" to open the input deck in a text editor.
- Find the "objective" definition and update it to look like that below. This will tell Plato to evaluate the objective by evaluating criterion 1 (mechanical_compliance) and then criterion 3 (mass_properties) and then do a weighted sum using a weight of 1 for mechanical_compliance and 10,000 for mass_properties. We have to weight the mass_properties sub-objective heavily to make sure the CG constraint is enforced.

Re-run the Optimization

- Click on the plato node in the tree to bring up the job submission panel in the Settings view
- Launch the job by clicking on Submit Simulation Job toward the top of the panel

CG-constrained Results

After 50 iterations you should have a result that looks like the one below. The CG was not exactly enforced. This is due to mesh discretization error as well as density values not being completely 0 or 1. However, it is pretty good. Mesh refinement and running the optimization longer can improve the enforcement of the CG.

Also note that because we forced a constraint on the design we did not reach the same performance level as far as how stiff the design is. In the new design the max y displacement is larger than the previous design.

